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ARTICLE INFO ABSTRACT

Objectives: This work aims to explore the impact of multicenter data heterogeneity on deep learning brain
Continual learning metastases (BM) autosegmentation performance, and assess the efficacy of an incremental transfer learning

Learning without forgetting technique, namely learning without forgetting (LWF), to improve model generalizability without sharing raw
Brain metastasis data.

Multicenter collaboration
Data privacy

Data heterogeneity

Keywords:

Materials and methods: A total of six BM datasets from University Hospital Erlangen (UKER), University
Hospital Zurich (USZ), Stanford, UCSF, New York University (NYU), and BraTS Challenge 2023 were used.
First, the performance of the DeepMedic network for BM autosegmentation was established for exclusive
single-center training and mixed multicenter training, respectively. Subsequently privacy-preserving bilateral
collaboration was evaluated, where a pretrained model is shared to another center for further training using
transfer learning (TL) either with or without LWF.

Results: For single-center training, average F1 scores of BM detection range from 0.625 (NYU) to 0.876 (UKER)
on respective single-center test data. Mixed multicenter training notably improves F1 scores at Stanford and
NYU, with negligible improvement at other centers. When the UKER pretrained model is applied to USZ,
LWF achieves a higher average F1 score (0.839) than naive TL (0.570) and single-center training (0.688) on
combined UKER and USZ test data. Naive TL improves sensitivity and contouring accuracy, but compromises
precision. Conversely, LWF demonstrates commendable sensitivity, precision and contouring accuracy. When
applied to Stanford, similar performance was observed.

Conclusion: Data heterogeneity (e.g., variations in metastases density, spatial distribution, and image spatial
resolution across centers) results in varying performance in BM autosegmentation, posing challenges to model
generalizability. LWF is a promising approach to peer-to-peer privacy-preserving model training.

Introduction

Individuals diagnosed with metastatic cancer face a significant like-
lihood of developing brain metastases (BM), with reported incidence
rates reaching up to 40% [1]. Stereotactic radiosurgery (SRS) has
emerged as a preferred method for BM treatment [2]. The planning
of SRS treatment necessitates detailed information on the number,
size, locations, and boundaries of BM [3], which in turn requires their
precise detection and contouring. Manual BM identification is not only

time-intensive but also prone to variability between observers [4]. This
manual identification process particularly fails with smaller metastases,
which may go unnoticed due to their visibility on few image slices and
their low contrast [4]. Moreover, the challenge of distinguishing BM
from similar-looking anatomical structures, like blood vessels, in 2D im-
age slices further complicates manual identification [5]. Consequently,
the development of automated, computer-assisted techniques for BM
identification holds significant importance for clinical practice.
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Table 1

Details of BM datasets from different centers.
Dataset UKER USZ Stanford UCSF NYU BraTS
# training volumes 600 157 56 200 104 178
# validation volumes 67 10 5 23 10 10
# test volumes 103 35 40 100 50 50
In-plane resolution (mm) <1.0 0.6 0.94 <1.0 <1.0 <1.0
Through-plane slice thickness (mm) <1.0 0.6 1.0 <1.5 <5.0 <5.0
# metastases per volume 2.2 4.2 12.2 10.3 6.6 7.8
# training metastases 1505 640 544 2159 616 1601
# validation metastases 130 29 33 357 102 35
# test metastases 272 144 656 826 359 213
Mean training metastasis size (em?) 1.642 1.506 0.352 0.327 0.828 1.371
Mean validation metastasis size (cm?) 1.761 2.650 0.196 0.329 0.583 5.603
Mean test metastasis size (cm?) 1.950 1.490 0.237 0.879 1.189 1.786
Median training metastasis size (cm?) 0.132 0.229 0.054 0.034 0.078 0.073
Median validation metastasis size (cm?) 0.216 0.402 0.067 0.038 0.077 0.070
Median test metastasis size (cm?) 0.131 0.134 0.031 0.037 0.077 0.067
Training metastases < 0.1 cm’ 44.4% 35.4% 67.5% 71.2% 55.5% 56.3%
Validation metastases < 0.1 cm? 36.9% 31.0% 60.6% 72.3% 57.8% 54.3%
Test metastases < 0.1 cm? 46.0% 44.4% 79.0% 67.4% 57.4% 55.9%

With the fast development of deep learning techniques and their
adoptions into the field of radiation oncology, many deep learning
algorithms have been proposed for automatic BM detection and seg-
mentation [6,7], which have achieved high efficiency (compared with
manual identification) and impressive efficacy despite of performance
variance. According to the latest systematics reviews [6,7], 3D U-Net
and DeepMedic based networks are the most commonly used and effec-
tive networks for BM identification. Among all the reported methods,
most of them were developed from and evaluated on single-center,
in-house data, while multi-center studies are gaining more and more
attention [4,8-13]. The performance of deep learning algorithms relies
highly on the amount and quality of training data. Due to the limited
data in a single center, multicenter collaboration is very important
for developing high performance deep learning models. Nevertheless,
the influence of data heterogeneity among multiple centers in deep
learning auto-segmentation model performance has not yet been fully
addressed.

In addition, due to data privacy and data management regulations
(e.g., the EU medical device regulation [14]), data sharing among
multiple centers is restricted, which impedes the development of high
performance deep learning tumor segmentation models from multicen-
ter collaboration. To overcome the data privacy issue, federated learn-
ing, which trains a high performance model collaboratively without
sharing data, has been proposed [15]. Due to the technical difficulty,
communication frequency, financial cost and management complex-
ity, center-to-peer federated learning [15], where a central server is
required to coordinate training information for a global model, is
challenging for practical use. Moreover, an implicit power hierarchy
may arise from the centralized structure of center-to-peer federated
learning, making cooperation unattractive for participating peer-level
institutions. Therefore, peer-to-peer federated learning [15] is more
feasible in practice, and the simplest way is to continually train the
same model one center after another [16]. However, when a model
is retrained on new datasets or tasks, deep learning suffers from the
problem of catastrophic forgetting [17], i.e., deep learning models
forget learned old knowledge catastrophically. Continual learning [17]
aims to allow machine learning models to be updated through new data
while retaining previously learned knowledge. In our in-depth technical
survey [18], learning without forgetting (LWF) [19] was superior to
other regularization-based continual learning methods with statistical
significance. Therefore, in this work, the efficacy of LWF in multicenter
collaboration on BM autosegmentation is investigated.

This work aims to:

« Investigate the influence of data heterogeneity across multiple
centers on the performance of deep learning models for BM
autodetection.

+ Assess the efficacy of LWF as a privacy-preserving strategy for
multicenter collaboration in improving model generalizability.

+ Evaluate a single-center training model to be used at other cen-
ters.

Materials and methods
Datasets

T1 contrast enhanced (T1CE) MRI datasets from University Hospi-
tal Erlangen (Universitédtsklinikum, UKER), University Hospital Zurich
(Universitédts Spital Ziirich, USZ), Stanford University [20], Univer-
sity of California San Francisco (UCSF) [21], New York University
(NYU) (https://nyumets.org/) and Brain Tumor Segmentation (BraTS)
2023 BM Segmentation Challenge [22] were used. The UKER and USZ
datasets are internal, with no ethical review needed for this study,
as patients provided written consent for retrospective scientific use
of their data. The other datasets are publicly available with their
respective Institutional Review Board (IRB) approval and Data Transfer
Agreement (DTA) [20-22]. Since T1CE is the main sequence used
for radiotherapy treatment planning [23-25], in this work only T1CE
volumes are used.

The UKER dataset contains 853 T1CE volumes in total using the
MPRAGE sequence from a longitudinal study [26]. The volumes were
acquired from various Siemens Healthcare 1.5 T MRI scanners (Mag-
netom Aera and Magnetom Avanto mainly). The primary cancers in-
clude 41.3% skin cancer, 22.2% lung cancer, 12.4% breast cancer,
and 10.5% kidney cancer. The USZ dataset contains 202 T1CE turbo
field echo (TFE) volumes from a Philips Healthcare Ingenia 3.0 T
scanner, with lung and melanoma primary cancers. The details of other
public datasets can be found in their respective descriptions [20-22].
Note that the total numbers of cases with labels accessible to public
participants may differ from those reported in the dataset descriptions,
since certain test cases are internal only. The provided labels were
used without further refinement to avoid potential biases. The BM
distribution of different datasets in size, density, and patient number
are summarized in Table 1. Each dataset is exclusively partitioned into
training, validation, and test subsets, with all volumes from the same
patient contained within a single subset. All the MRI volumes were
preprocessed by the same pipeline: skull stripping, volume/voxel size
uniformization, bias field correction, and intensity Z-normalization.
All the volumes have 240 x 240 x 155 voxels with a voxel size of
Imm X 1 mm X 1 mm.
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Neural network and learning without forgetting

The DeepMedic network [27] is chosen because of its efficacy in
various brain tumor segmentation tasks as well as its success in BM
identification [27-32]. In our previous work [32], DeepMedic has
achieved encouraging performance on the UKER dataset. In this work,
the performance of DeepMedic on different datasets is evaluated.

In order to train a model from multiple centers without sharing raw
data, peer-to-peer federated learning is one promising approach. The
most straightforward way for such peer-to-peer federated learning in-
volves continuous model training across various centers through weight
transfer. Specifically, single weight transfer (SWT) sequentially trains
the model from the first to the last center, whereas cyclic weight trans-
fer (CWT) iteratively trains the model across all centers in cycles, as
described in [33]. To avoid the forgetting problem after model sharing,
continual learning techniques can be applied. In our previous in-depth
survey [18], LWF was demonstrated to have superior performance
to other continual learning regularization methods. Therefore, LWF
is chosen in this work. LWF controls forgetting by imposing network
output stability. In other words, the model trained with local data
should yield similar predictions for specific samples as it did before
training. Knowledge distillation loss (KDL) [34] is the key element of
LWEF, which constrains the new model (called student model) output to
have a similar distribution of class probabilities to those predicted by
the teacher model.

The objective function for LWF consists of a regular segmentation
loss L., and the KDL Lgp;,

seg
Liwr = Lseg (M(x,0), ) + ALypy, (M(x,0), M (x,6)) , (@))

where M is the network model, x is the set of input data samples and
y is the set of corresponding ground truth segmentation masks, 4 is a
relaxation parameter for KDL, 6, is the model parameter set from the
previous center (teacher model), and 0 is the current model parameter
set to optimize.

Experimental setup

All DeepMedic models were trained on an NVIDIA Quadro RTX
8000 GPU with Intel Xeon Gold 6158R CPUs. The model was trained
for 300 epochs at each center. The validation was performed every two
epochs, and the final models were selected based on the best validation
performance (i.e., best volumetric Dice scores). The Adam optimizer
with an initial learning rate of 0.001 and a weight decay of 0.0001
was applied. A probability of 50% for extracting tumor class containing
segments was applied to keep class-balance. In this work, the binary
cross-entropy (BCE) loss together with a subvolume-level sensitivity-
specificity loss (« = 0.5) [32] was used for Loegs and 1 was set to 0.1 in
Eq. (1). Our implementation is publicly available on GitHub for further
research and collaboration.'

In order to test the applicability of a single-center trained model for
other centers, the UKER pretrained (our own) model was shared to USZ
and Stanford respectively, where a bilateral agreement was available.

For detection performance, the lesion-wise sensitivity, precision,
and average false positive rate (FPR) per patient were used for the
evaluation of BM identification accuracy. In this work, any segmenta-
tion demonstrating an overlap of at least one voxel with the reference
label segmentation was considered a true positive (i.e., no overlap
cutoff), since tiny BM contain only a few voxels and some comprise
just a single voxel. Because of the trade-off between sensitivity and
precision, F; score is commonly used in many biomedical detection and
segmentation tasks:

sensitivity - precision
p? - precision + sensitivity "

@

Fy=(1+p%-

1 https://github.com/YixingHuang/DeepMedicPytorch
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where a larger f values sensitivity more than precision. In this work,
F1 and F2 are used.

In clinical practice, true positive metastases are confirmed first
and subsequently their contouring masks will be refined for treatment
planning (i.e., detection first and contouring later) in a manual manner.
Therefore, in this work, the contouring accuracy is evaluated on a
per-lesion level for true positive metastases only. In addition to the con-
ventional Dice score and Hausdorff distance, the surface Dice (sDice)
score [35] with a tolerance of 1 mm and 95% Hausdorff distance
(HD95) are applied to compensate annotation errors. The definition of
sDice is provided in [35], and HD95 is calculated as the 95th percentile
of the distances between boundary points of two segmentation masks.
All the experiments were repeated 5 times and the unpaired t-test was
used for assessing statistical significance.

Results

Data heterogeneity: In addition to Table 1, axial and coronal image
examples from different centers are displayed in Fig. 1, where data
heterogeneity is clearly visualized:

(a) BM density: The UKER dataset has the lowest density, whereas
Stanford and UCSF have a high density.

(b) BM spatial distribution: The USZ dataset includes metastases of
leptomeningeal origin near cortical surfaces and meninges, while BM
in other datasets are mainly located in the brain parenchyma.

(c) Image resolution: Many cases in the NYU and BraTS datasets
have low resolution along the transversal dimension (due to the use
of older 2D T1 spin echo sequences), which increases the difficulty for
human labeling as well as automatic detection.

(d) Image contrast: The UCSF datasets contains much more cases
where blood vessels and meninges are highly enhanced (e.g. related
to higher contrast agent dose or lower time interval between contrast
administration and sequence acquisition in the imaging protocols),
which has the risk to increase false positive detection rate, e.g., the
false positive structure in Fig. 1(d).

Single-center training: The single-center training performances of
UKER and UCSF models with respect to training data amount are
displayed in Fig. 2(a) and (b), respectively. They demonstrate the
advantage of F2 over F1 as a BM detection metric. The detailed perfor-
mance of all the single-center-training models is displayed in the top
part of Table 2. The UKER model achieves a relatively high lesion-wise
sensitivity and precision, potentially due to the high image quality,
low metastasis density, and a large number of training volumes. The
UCSF model achieves a similar sensitivity, but with a slightly lower
precision. The Stanford model achieves a low sensitivity, due to the
small number of training patients. In contrast, the NYU and BraTS$
models achieved low precision values on their respective test data,
which could be ascribed to their low axial slice resolution. As the
USZ dataset includes metastases of leptomeningeal origin near cortical
surfaces and meninges, the trained model predicted many false positive
metastases outside the brain region, e.g., Fig. 3(b) and Fig. 3(e). This
behavior is only observed for models trained from the USZ dataset,
but serves as a good indicator of model performance and knowledge
transferability. Such false positive metastases can be simply removed
with binary brain masks, and the precision is improved from 0.367 to
0.776.

Mixed training: The detailed performance of mixed multicenter
training (USZ data excluded due to data privacy) is displayed in the
bottom part of Table 2. Compared to single-center training, mixed
training demonstrates improved detection sensitivity across all centers,
with statistically significant (p < 0.01) gains at all centers except
UCSF. The F2 scores of Stanford (p < 0.01), NYU (p < 0.01), and
UKER (p < 0.02) have a significant improvement, as displayed in
Fig. 2(c). However, USZ, UCSF and BraTS with mixed training have
similar F2 scores to those with single-center training, respectively, as
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(b) USZ (c) Stanford

Axial slices

(d) UCSF

(g) UKER (h) USZ (i) Stanford

N

Coronal slices

() UCSF (k) NYU (1) BraTS

Fig. 1. Exemplary images from different datasets (top: axial slices; bottom: coronal slices). The axial and coronal slices of the same center are not from the same patients. The
green arrows indicate true positive brain metastases, and the red arrows indicate suspicious spots which are true negative. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Table 2
Autosegmentation performance on different datasets with single-center or mixed training (average from 5 repeats, lesion-wise,
HD95 unit: mm).

Training Test data Sensitivity Precision FPR F1 F2 sDice HD95
UKER 0.854 0.900 0.25 0.876 0.863 0.790 4.21
0.776 0.99 0.802 0.819
usz 0.831 (0.367) (6.06) (0.506) (0.659) 0.727 8.43
Single-center Stanford 0.657 0.723 4.15 0.688 0.669 0.671 3.77
UCSF 0.847 0.704 2.94 0.769 0.814 0.759 3.67
NYU 0.714 0.557 4.11 0.625 0.675 0.600 8.61
BraTS 0.769 0.575 2.17 0.658 0.720 0.595 6.79
UKER 0.906 0.814 0.55 0.857 0.886 0.880 2.75
USz 0.885 0.651 1.95 0.750 0.825 0.775 8.76
Mixed (five centers Stanford 0.781 0.836 2.54 0.807 0.791 0.839 2.27
without USZ) UCSF 0.855 0.705 2.98 0.772 0.820 0.839 2.19
NYU 0.764 0.649 2.98 0.702 0.738 0.767 5.55
BraTS 0.867 0.445 4.64 0.587 0.728 0.689 5.83

Note: The values in brackets for USZ are without binary brain masks (brain masks can remove false positive metastases outside
brain regions). Others have the same values for both with and without brain masks. The bold values highlight the centers,
which have notable benefit in BM detection from mixed training compared with single-center training.

displayed in Fig. 2(c). This observation indicates that more training better (p < 0.01 except USZ) contouring performance for true positive
data from other centers does not necessarily improve BM detection metastases than single-center-training models, as displayed in Fig. 2(d).
performance, which can be attributed to the data heterogeneity across UKER model shared to USZ: The results of the bilateral col-
centers. Nevertheless, the mixed-training model achieved significantly laboration between UKER and USZ are reported in Table 3 (overall
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Table 3
Autosegmentation performance for bilateral collaboration using different training methods (average from 5 repeats, lesion-wise, HD95 unit: mm).
Training Test data Model Sensitivity Precision FPR F1 F2 sDice HD95
0.584 1.81 0.688 0.771
Combined U Zsinglecenter 0-839 ©0262) (724 (039%9) (058 7> 336
UKER+USZ UKER 0.418 3.89 0.570 0.732
collaboration  +USZ Thuer= vsz 0-905 ©035%)  (526) (0.506) (0.685) 0821 463
LWF ygr o usz 0.864 0.815 0.59 0.839 0.854 0737  7.01
Stanfordyinge center 0.686 0.591 3.29 0.630 0.661 0592  7.79
UKER+ Combined  TLygro stanford 0.854 0.455 6.66 0.593 0.726 0.823 277
Stanford UKER-+ LWF e o stanford 0.763 0.811 1.16 0.786 0.772 0779 3.1
collaboration  Stanford LWFyggr o stanford, cwr 0-796 0.708 2.15 0.749 0.776 0.798 3.3
Mixedyers stanford 0.783 0.832 1.03 0.807 0.792 0.827 285

Note: The values in brackets are without binary brain masks (brain masks can remove false positive metastases outside brain regions). Others
have the same values for both with and without brain masks. TL: transfer learning (TL) without LWF; LWF: transfer learning with LWF; CWT:
cyclic weight transfer. The bold values highlight the best detection or contouring performances. USZgpgje.center 0 Stanfordggie.center Were solely
trained on USZ and Stanford data respectively and are provided as a reference.
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Fig. 2. The BM detection and segmentation performances of different models. (a) and (b) are the performances of UKER and UCSF single-center-training models with respect to
training data amount (number of volumes/patients), respectively. (c) and (d) display the BM detection performance and segmentation performance respectively with single-center
training and mixed training. (e) and (f) display BM detection and segmentation performances of different methods. The error bars in (c)—(d) indicate the standard deviations.
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(a) UKER original image
(red) and true (green) positive

UKER model shared to USZ

(e) TL model false positive (f) TL model false positive

(i) Stanford original image (j) Human annotations

UKER model shared to Stanford

(m) LWF model segmentation (n) UKER original image

(b) USZ single-center model false (c¢) TL model false (red) and

(g) TL model false positive

(o) TL model false (red) and
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true (green) positive

o)

(h) TL model false positive

(k) Stanford single-center model (1) TL model false (red) and true
segmentation

(green) positive segmentation

(p) LWF model true positive

true (green) positive

Fig. 3. The BM autosegmentation examples of different models. The top rows displays the results of different models on one UKER exemplary image when the UKER model was
shared to USZ, while the second rows displays other representative false positive examples of the TLyygr_ysz model. The bottom two rows display the results of different models
when the UKER model was shared to Stanford. Red areas are false positive segmentations, green areas are true positive segmentations, and the yellow arrows indicate false negative
metastases. Subfigure (j) is an example of human annotation errors in the Stanford dataset, where the tiny metastasis indicated by the yellow arrow was not labeled, and the
annotation mask of the top metastasis is not accurate. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

performance on both test datasets) as well as supplementary Table 2
(performance on each individual test dataset):

(a) Single-center training: When the UKER pretrained model was
directly applied to USZ test data without further fine-tuning, the model
achieved decent sensitivity and precision (see Supplementary Table 2).
Even when no brain masks were used, no false positive metastases were
predicted outside the brain region. However, when the USZ pretrained
model was directly applied to UKER test data, the model obtained a

decent sensitivity but a very low precision. This indicates the good
generalizability of the UKER model to the USZ data, whereas the
reverse scenario—applying the model from USZ to UKER data—does not
possess comparable generalizability.

(b) Naive transfer learning (TL): When the UKER model was fine-
tuned without LWF on USZ training data, such a naive TL model
achieved high sensitivity (0.915) but low precision (0.362) for the
UKER test data. The TL model predicted false positive metastases near
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the brain boundary for both USZ and UKER data (some examples in
Fig. 3(c)-(h)). These results reveal that the fine-tuned model overfits to
the USZ data and forgets the knowledge learned from the UKER data.

(c) LWF: The LWF model achieved decent sensitivity (0.822) and
precision (0.730) without brain mask for the USZ test data. No false
positive metastases were predicted outside the brain region, indicating
the benefit of LWF in the target center. The LWF model achieved high
sensitivity (0.874) and high precision (0.855) on the UKER test data
(one example in Fig. 3(d)), demonstrating the learned knowledge from
the UKER training dataset was preserved.

(d) Overall comparison: The USZ single-center-training model and
the TL model achieved low F2 scores with brain masks on combined test
data (Table 3), respectively. In contrast, the LWF model achieved the
best F2 score of 0.854, which is significantly better than USZ single-
center training and TL (p < 0.01, see Fig. 2(e)). This highlights the
benefit of LWF in privacy-preserving bilateral collaboration for BM
detection. Although TL is not optimal for BM detection, it is beneficial
to improve BM contouring accuracy of true positive metastases (sDice
significant with p < 0.01, see Fig. 2(e)).

UKER model shared to Stanford: The main differences between
the UKER and Stanford datasets are the BM density, BM size, and the
number of training patients. The Stanford single-center-training model
got low sensitivity and low precision on the combined test data, because
of the low number of training data. The TL model has a significantly
large improvement in detection sensitivity (p < 0.01) and contouring
accuracy (p < 0.01). But it has a very low detection precision (p <
0.03). Likely the TL model tends to overestimate the presence of BM in
the UKER test data due to the high BM density in the Stanford training
data. The LWF model achieved both good sensitivity and precision, and
hence has a significantly better F2 score of 0.772 than single-center
training (p < 0.01) and TL (p < 0.01), which is close to that of mixed
training (F2 = 0.792). Compared with single weight transfer (SWT),
CWT with 4 iterations using LWF further improves the segmentation
accuracy (sDice from 0.779 to 0.798, HD95 from 3.51 mm to 3.13 mm),
but no statistical significance was found.

Discussion

The results on the UKER-USZ and UKER-Stanford collaborations
show that TL can improve the sensitivity of the model as well as
the segmentation accuracy of true positive metastases compared with
single-center training, but the TL model tends to overfit to the target
center data and detects more false positive BM. Further comparing
LWF with TL, LWF can achieve relatively high sensitivity as well as
high precision. This indicates that LWF is a promising approach for
peer-to-peer federated learning and multicenter collaboration on BM
autosegmentation without sharing raw data.

Several multicenter studies on deep learning for BM autosegmenta-
tion have been published previously [8-13]. In contrast to the AURORA
multicenter study with a median BM volume size of 7.3cm3, the
datasets in our study feature significantly smaller median volume sizes,
all less than 0.5cm?. The principal novelty of our work lies in the
introduction of a privacy-preserving method, i.e. LWF, which enables
the training of a model across multiple centers without the need to
share raw data. This contrasts with other studies, which typically rely
on pooled multicenter data for model training. This approach addresses
significant privacy concerns and enhances the feasibility of multicenter
collaboration on BM autosegmentation.

The single-center training shows that Stanford, NYU and BraTS
had low F2 scores. With mixed training, the F2 scores of NYU and
BraTS stayed low despite of improvement. This is very likely because of
their distinct image features from other datasets, in particular the low
axial slice resolution. This implies that deep learning models for BM
identification also require high image quality similar to human experts.
For human experts, <1 mm isotropic resolution on 3D scans has become
a consensus of image resolution requirement among radiation oncology

Radiotherapy and Oncology 198 (2024) 110419

communities [23]. Human experts have also reached consensus on op-
timal sequence selection, contrast agent uptake, distortion correction,
and motion control [23]. Satisfying such requirements are believed
to improve deep learning model performance for BM identification as
well.

In general medical tasks, F1 is the most widely used F; score. For
BM detection, the first primal clinical requirement is high sensitivity
in detecting BM, regardless of the exact 3D extent of each metastasis.
False positives can be removed afterwards by human expert review. In
practice, achieving high sensitivity is more challenging than achieving
high precision. For example, a network can achieve high precision
by detecting a few large, high-contrast BM, but it is very challenging
to detect all the metastases (large and small, high and low contrast).
Therefore, F2, which prioritizes sensitivity, is more appropriate than F1
for BM detection in clinical application. Fig. 2(a)-(b) and the average
detection performance of Tab. 2 in [21] demonstrate the advantage of
F2 over F1 with increasing training data amount. Note that the benefit
of LWF over TL and single-center training is more prominent in F1 than
F2, as displayed in Fig. 2 and Table 3.

This work has several limitations that should be noted: (a) The
training of 3D models requires significant computational resources,
which limited us to only five repetitions for each experimental setting.
Ideally, a greater number of repetitions would be conducted to enhance
the statistical robustness of the results. (b) Although six datasets from
different centers were available for this study, this offers numerous
potential combinations for multicenter collaboration. However, we only
investigated two bilateral collaboration scenarios to demonstrate the
benefits of LWF. We plan to explore additional combinations and
collaboration models in our future work to further validate and expand
on these initial findings.

In addition, future studies will aim to include a wider variety of
datasets from different hospitals and institutions across Europe. This
would test the model’s robustness and ability to generalize across
diverse patient demographics and equipment variations. The ultimate
goal is to seamlessly integrate the method in this work into existing
clinical workflows. Achieving this integration necessitates comprehen-
sive Al-specific quality assurance (QA) measures [36] to ensure the
reliability, accuracy, and safety of the model. Prior to clinical de-
ployment, the model must undergo stringent validation and secure
approval from relevant health authorities, such as the Food and Drug
Administration (FDA) or European Medicines Agency (EMA). Signifi-
cant additional research will be necessary to bridge the gap between
the developmental phase and practical clinical applications, ensuring
that all scientific, regulatory, and operational benchmarks are met.

Conclusion

The heterogeneity of data across multiple centers poses a significant
challenge to the generalizability of deep learning models from one
center to another. This is particularly evident in the development of
deep learning models for BM identification, which, akin to human
experts, necessitate high-quality imaging data for both training and
testing. TL and LWF emerge as valuable strategies for fostering privacy-
preserving collaborations in the advancement of BM autosegmentation
models. While TL demonstrates notable strengths in achieving high
detection sensitivity and contouring accuracy, it does so at the expense
of precision. Conversely, LWF presents a commendable equilibrium
between sensitivity and precision, offering a more balanced approach
to multicenter model development.
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